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In the absence of vaccines and antiviral medication, non- 
pharmaceutical interventions (NPIs) implemented in response to 
(emerging) epidemic respiratory viruses are the only option avail-

able to delay and moderate the spread of the virus in a population1.
Confronted with the worldwide COVID-19 epidemic, most gov-

ernments have implemented bundles of highly restrictive, some-
times intrusive, NPIs. Decisions had to be taken under rapidly 
changing epidemiological situations, despite (at least at the very 
beginning of the epidemic) a lack of scientific evidence on the indi-
vidual and combined effectiveness of these measures2–4, degree of 
compliance of the population and societal impact.

Government interventions may cause substantial economic and 
social costs5 while affecting individuals’ behaviour, mental health 
and social security6. Therefore, knowledge of the most effective 
NPIs would allow stakeholders to judiciously and timely implement 
a specific sequence of key interventions to combat a resurgence of 
COVID-19 or any other future respiratory outbreak. Because many 
countries rolled out several NPIs simultaneously, the challenge 
arises of disentangling the impact of each individual intervention.

To date, studies of the country-specific progression of the 
COVID-19 pandemic7 have mostly explored the independent 
effects of a single category of interventions. These categories include 
travel restrictions2,8, social distancing9–12 and personal protective 
measures13. Additionally, modelling studies typically focus on NPIs 
that directly influence contact probabilities (for example, social dis-
tancing measures18, social distancing behaviours 12, self-isolation, 
school closures, bans on public events20 and so on). Some studies 
focused on a single country or even a town14–18 while other research 
combined data from multiple countries but pooled NPIs into rather 
broad categories15,19–21, which eventually limits the assessment  
of specific, potentially critical, NPIs that may be less costly and  
more effective than others. Despite their widespread use, relative 
ease of implementation, broad choice of available tools and their 
importance in developing countries where other measures (for 
example, increases in healthcare capacity, social distancing or 

enhanced testing) are difficult to implement22, little is currently 
known about the effectiveness of different risk-communication 
strategies. An accurate assessment of communication activities 
requires information on the targeted public, means of communica-
tion and content of the message.

Using a comprehensive, hierarchically coded dataset of 6,068  
NPIs implemented in March–April 2020 (when most European 
countries and US states experienced their first infection waves) in 
79 territories23, here we analyse the impact of government inter-
ventions on Rt using harmonized results from a multi-method 
approach consisting of (1) a case-control analysis (CC), (2) a step 
function approach to LASSO time-series regression (LASSO), (3) 
random forests (RF) and (4) transformers (TF). We contend that  
the combination of four different methods, combining statisti-
cal, inference and artificial intelligence classes of tools, also allows 
assessment of the structural uncertainty of individual methods24. 
We also investigate country-specific control strategies as well as the 
impact of selected country-specific metrics.

All the above approaches (1–4) yield comparable rankings of the 
effectiveness of different categories of NPIs across their hierarchical 
levels. This remarkable agreement allows us to identify a consensus 
set of NPIs that lead to a significant reduction in Rt. We validate this 
consensus set using two external datasets covering 42,151 measures 
in 226 countries. Furthermore, we evaluate the heterogeneity of  
the effectiveness of individual NPIs in different territories. We 
find that the time of implementation, previously implemented 
measures, different governance indicators25, as well as human and  
social development affect the effectiveness of NPIs in countries to 
varying degrees.

Results
Global approach. Our main results are based on the Complexity 
Science Hub COVID-19 Control Strategies List (CCCSL)23. This 
dataset provides a hierarchical taxonomy of 6,068 NPIs, coded on 
four levels, including eight broad themes (level 1, L1) divided into 
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63 categories of individual NPIs (level 2, L2) that include >500 sub-
categories (level 3, L3) and >2,000 codes (level 4, L4). We first com-
pare the results for NPI effectiveness rankings for the four methods 
of our approach (1–4) on L1 (themes) (Supplementary Fig. 1). A 
clear picture emerges where the themes of social distancing and 
travel restrictions are top ranked in all methods, whereas environ-
mental measures (for example, cleaning and disinfection of shared 
surfaces) are ranked least effective.

We next compare results obtained on L2 of the NPI dataset—that 
is, using the 46 NPI categories implemented more than five times. 
The methods largely agree on the list of interventions that have a 
significant effect on Rt (Fig. 1 and Table 1). The individual rankings 
are highly correlated with each other (P = 0.0008; Methods). Six NPI 
categories show significant impacts on Rt in all four methods. In 
Supplementary Table 1 we list the subcategories (L3) belonging to 
these consensus categories.

A normalized score for each NPI category is obtained by res-
caling the result within each method to range between zero (least  
effective) and one (most effective) and then averaging this score. 
The maximal (minimal) NPI score is therefore 100% (0%), mean-
ing that the measure is the most (least) effective measure in each 
method. We show the normalized scores for all measures in the 
CCCSL dataset in Extended Data Fig. 1, for the CoronaNet data-
set in Extended Data Fig. 2 and for the WHO Global Dataset of 
Public Health and Social Measures (WHO-PHSM) in Extended 

Data Fig. 3. Among the six full-consensus NPI categories in the 
CCCSL, the largest impacts on Rt are shown by small gathering 
cancellations (83%, ΔRt between −0.22 and –0.35), the closure of 
educational institutions (73%, and estimates for ΔRt ranging from 
−0.15 to −0.21) and border restrictions (56%, ΔRt between −0.057 
and –0.23). The consensus measures also include NPIs aiming to 
increase healthcare and public health capacities (increased avail-
ability of personal protective equipment (PPE): 51%, ΔRt −0.062 
to −0.13), individual movement restrictions (42%, ΔRt −0.08  
to −0.13) and national lockdown (including stay-at-home order in 
US states) (25%, ΔRt −0.008 to −0.14).

We find 14 additional NPI categories consensually in three of 
our methods. These include mass gathering cancellations (53%, 
ΔRt between −0.13 and –0.33), risk-communication activities to 
inform and educate the public (48%, ΔRt between –0.18 and –0.28) 
and government assistance to vulnerable populations (41%, ΔRt 
between −0.17 and –0.18).

Among the least effective interventions we find: government 
actions to provide or receive international help, measures to 
enhance testing capacity or improve case detection strategy (which 
can be expected to lead to a short-term rise in cases), tracing and 
tracking measures as well as land border and airport health checks 
and environmental cleaning.

In Fig. 2 we show the findings on NPI effectiveness in a 
co-implementation network. Nodes correspond to categories (L2) 
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Fig. 1 | Change in Rt (ΔRt) for 46 NPIs at L2, as quantified by CC analysis, LASSO and TF regression. The left-hand panel shows the combined 
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with size being proportional to their normalized score. Directed 
links from i to j indicate a tendency that countries implement NPI 
j after they have implemented i. The network therefore illustrates 
the typical NPI implementation sequence in the 56 countries and 
the steps within this sequence that contribute most to a reduction 
in Rt. For instance, there is a pattern where countries first cancel 
mass gatherings before moving on to cancellations of specific types 
of small gatherings, where the latter associates on average with more 
substantial reductions in Rt. Education and active communication 
with the public is one of the most effective ‘early measures’ (imple-
mented around 15 days before 30 cases were reported and well 
before the majority of other measures comes). Most social distanc-
ing (that is, closure of educational institutions), travel restriction 
measures (that is, individual movement restrictions like curfew and 
national lockdown) and measures to increase the availability of PPE 
are typically implemented within the first 2 weeks after reaching 
30 cases, with varying impacts on Rt; see also Fig. 1.

Within the CC approach, we can further explore these results 
on a finer hierarchical level. We show results for 18 NPIs (L3) of 
the risk-communication theme in Supplementary Information  
and Supplementary Table 2. The most effective communication  
strategies include warnings against travel to, and return from, 
high-risk areas (ΔRCC

t = −0.14 (1); the number in parenthe-
sis denotes the standard error) and several measures to actively 
communicate with the public. These include to encourage, for 
example, staying at home (ΔRCC

t = −0.14 (1)), social distancing 
(ΔRCC

t = −0.20 (1)), workplace safety measures (ΔRCC
t = −0.18 (2)), 

self-initiated isolation of people with mild respiratory symptoms 
(ΔRCC

t = −0.19 (2)) and information campaigns (ΔRCC
t = −0.13 (1)) 

(through various channels including the press, flyers, social media 
or phone messages).

Validation with external datasets. We validate our findings with 
results from two external datasets (Methods). In the WHO-PHSM 
dataset26 we find seven full-consensus measures (agreement on sig-
nificance by all methods) and 17 further measures with three agree-
ments (Extended Data Fig. 4). These consensus measures show a 
large overlap with those (three or four matches in our methods) 
identified using the CCCSL, and include top-ranked NPI measures 
aiming at strengthening the healthcare system and testing capac-
ity (labelled as ‘scaling up’)—for example, increasing the healthcare 
workforce, purchase of medical equipment, testing, masks, financial 
support to hospitals, increasing patient capacity, increasing domes-
tic production of PPE. Other consensus measures consist of social 
distancing measures (‘cancelling, restricting or adapting private 
gatherings outside the home’, adapting or closing ‘offices, businesses, 
institutions and operations’, ‘cancelling, restricting or adapting mass 
gatherings’), measures for special populations (‘protecting popula-
tion in closed settings’, encompassing long-term care facilities and 
prisons), school closures, travel restrictions (restricting entry and 
exit, travel advice and warning, ‘closing international land borders’, 
‘entry screening and isolation or quarantine’) and individual move-
ment restriction (‘stay-at-home order’, which is equivalent to con-
finement in the WHO-PHSM coding). ‘Wearing a mask’ exhibits 
a significant impact on Rt in three methods (ΔRt between −0.018 
and –0.12). The consensus measures also include financial packages 
and general public awareness campaigns (as part of ‘communica-
tions and engagement’ actions). The least effective measures include 
active case detection, contact tracing and environmental cleaning 
and disinfection.

The CCCSL results are also compatible with findings from  
the CoronaNet dataset27 (Extended Data Figs. 5 and 6). Analyses 
show four full-consensus measures and 13 further NPIs with an 

Table 1 | Comparison of effectiveness rankings on L2 

L2 category Score (%) Consensus ΔRCC
t

I
ΔRLASSO

t
I

Importance (RF) ΔRTF
t

I
Small gathering cancellation 83 4 –0.35 (2) –0.22 (5) 0.020 (2) –0.327 (3)

Closure of educational institutions 73 4 –0.16 (2) –0.21 (4) 0.028 (2) –0.146 (2)

Border restriction 56 4 –0.23 (2) –0.12 (2) 0.017 (2) –0.057 (2)

Increased availability of PPE 51 4 –0.11 (2) –0.13 (2) 0.012 (1) –0.062 (2)

Individual movement restrictions 42 4 –0.13 (2) –0.08 (3) 0.017 (2) –0.121 (2)

National lockdown 25 4 –0.14 (3) –0.09 (2) 0.0020 (9) –0.008 (3)

Mass gathering cancellation 53 3 –0.33 (2) 0 0.012 (1) –0.127 (2)

Educate and actively communicate with the public 48 3 –0.18 (4) 0 0.018 (2) –0.276 (2)

The government provides assistance to vulnerable 
populations

41 3 –0.17 (3) –0.18 (4) 0.009 (1) 0.090 (3)

Actively communicate with managers 40 3 –0.15 (2) –0.20 (4) 0.004 (2) –0.050 (2)

Measures for special populations 37 3 –0.19 (2) 0 0.008 (1) –0.100 (2)

Increase healthcare workforce 35 3 –0.17 (20) –0.13 (3) 0.030 (8) 0.011 (2)

Quarantine 30 3 –0.28 (2) –0.2 (1) 0.0023 (9) 0.023 (2)

Activate or establish emergency response 29 3 –0.13 (2) 0 0.0037 (9) –0.121 (2)

Enhance detection system 25 3 –0.19 (3) 0 0.0032 (9) –0.106 (2)

Increase in medical supplies and equipment 25 3 –0.13 (3) –0.004 (3) 0.003 (2) –0.200 (3)

Police and army interventions 23 3 –0.16 (2) 0 0.003 (2) –0.091 (2)

Travel alert and warning 20 3 –0.13 (3) 0.0 (1) 0.002 (1) –0.159 (3)

Public transport restriction 13 3 00.20 (4) –0.01 (7) 0.004 (1) –0.023 (3)

Actively communicate with healthcare professionals 11 3 0 –0.08 (4) 0.003 (1) –0.003 (2)

Out of the 46 NPI categories, all four methods show significant results for six NPIs (consensus 4) while three methods agree on 14 further NPIs (consensus 3). We report the average normalized score, the 
observed reduction in Rt for the various methods and NPI importance for RF. Numbers in parentheses denote half of the amount by which the last digit of the corresponding number outside the parentheses 
fluctuates within the 95% confidence interval.
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agreement of three methods. These consensus measures include 
heterogeneous social distancing measures (for example, restric-
tion and regulation of non-essential businesses, restrictions of mass 
gatherings), closure and regulation of schools, travel restrictions 
(for example, internal and external border restrictions), individual 
movement restriction (curfew), measures aiming to increase the 
healthcare workforce (for example, ‘nurses’, ‘unspecified health 
staff ’) and medical equipment (for example, PPE, ‘ventilators’, 
‘unspecified health materials’), quarantine (that is, voluntary or 
mandatory self-quarantine and quarantine at a government hotel or 
facility) and measures to increase public awareness (‘disseminating 
information related to COVID-19 to the public that is reliable and 
factually accurate’).

Twenty-three NPIs in the CoronaNet dataset do not show statis
tical significance in any method, including several restrictions  
and regulations of government services (for example, for tourist 
sites, parks, public museums, telecommunications), hygiene mea-
sures for public areas and other measures that target very specific 
populations (for example, certain age groups, visa extensions).

Country-level approach. A sensitivity check of our results with 
respect to the removal of individual continents from the analysis 
also indicates substantial variations between world geographical 
regions in terms of NPI effectiveness (Supplementary Information). 
To further quantify how much the effectiveness of an NPI depends 
on the particular territory (country or US state) where it has been 
introduced, we measure the heterogeneity of NPI rankings in dif-
ferent territories through an entropic approach in the TF method 
(Methods). Figure 3 shows the normalized entropy of each NPI 
category versus its rank. A value of entropy close to zero implies 
that the corresponding NPI has a similar rank relative to all other 
NPIs in all territories: in other words, the effectiveness of the NPI 
does not depend on the specific country or state. On the other hand, 
a high value of the normalized entropy signals that the performance 
of each NPI depends largely on the geographical region.

The values of the normalized entropies for many NPIs are far 
from one, and are also below the corresponding values obtained 
through temporal reshuffling of NPIs in each country. The effec-
tiveness of many NPIs therefore is, first, significant and, second, 
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depends on the local context (combination of socio-economic 
features and NPIs already adopted) to varying degrees. In general,  
social distancing measures and travel restrictions show a high 
entropy (effectiveness varies considerably across countries) whereas 
case identification, contact tracing and healthcare measures show 
substantially less country dependence.

We further explore this interplay of NPIs with socio-economic 
factors by analysing the effects of demographic and socio-economic 
covariates, as well as indicators for governance and human and 
economic development in the CC method (Supplementary 
Information). While the effects of most indicators vary across dif-
ferent NPIs at rather moderate levels, we find a robust tendency 
that NPI effectiveness correlates negatively with indicator values for 
governance-related accountability and political stability (as quanti-
fied by World Governance Indicators provided by the World Bank).

Because the heterogeneity of the effectiveness of individual NPIs 
across countries points to a non-independence among different 
NPIs, the impact of a specific NPI cannot be evaluated in isolation. 
Since it is not possible in the real world to change the sequence of 
NPIs adopted, we resort to ‘what-if ’ experiments to identify the 
most likely outcome of an artificial sequence of NPIs in each coun-
try. Within the TF approach, we selectively delete one NPI at a time 
from all sequences of interventions in all countries and compute the 
ensuing evolution of Rt compared to the actual case.

To quantify whether the effectiveness of a specific NPI depends 
on its epidemic age of implementation, we study artificial sequences 
of NPIs constructed by shifting the selected NPI to other days,  
keeping the other NPIs fixed. In this way, for each country and  

each NPI, we obtain a curve of the most likely change in Rt versus 
the adoption time of the specific NPI.

Figure 4 shows an example of the results for a selection of NPIs 
(see Supplementary Information for a more extensive report on 
other NPIs). Each curve shows the average change in Rt versus 
the adoption time of the NPI, averaged over the countries where 
that NPI has been adopted. Figure 4a refers to the national lock-
down (including stay-at-home order implemented in US states). 
Our results show a moderate effect of this NPI (low change in Rt) 
as compared to other, less drastic, measures. Figure 4b shows NPIs 
with the pattern ‘the earlier, the better’. For those measures (‘closure 
of educational institutions’, ‘small gatherings cancellation’, ‘airport 
restrictions’ and many more shown in Supplementary Information), 
early adoption is always more beneficial. In Fig. 4c, ‘enhancing test-
ing capacity’ and ‘surveillance’ exhibit a negative impact (that is, 
an increase) on Rt, presumably related to the fact that more test-
ing allows for more cases to be identified. Finally, Fig. 4d, showing  
‘tracing and tracking’ and ‘activate case notification’, demonstrates 
an initially negative effect that turns positive (that is, toward a 
reduction in Rt). Refer to Supplementary Information for a more 
comprehensive analysis of all NPIs.

Discussion
Our study dissects the entangled packages of NPIs23 and quantifies  
their effectiveness. We validate our findings using three different  
datasets and four independent methods. Our findings suggest  
that no NPI acts as a silver bullet on the spread of COVID-19. 
Instead, we identify several decisive interventions that significantly 
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contribute to reducing Rt below one and that should therefore  
be considered as efficiently flattening the curve facing a potential 
second COVID-19 wave, or any similar future viral respiratory 
epidemics.

The most effective NPIs include curfews, lockdowns and closing 
and restricting places where people gather in smaller or large num-
bers for an extended period of time. This includes small gathering 
cancellations (closures of shops, restaurants, gatherings of 50 per-
sons or fewer, mandatory home working and so on) and closure of 
educational institutions. While in previous studies, based on smaller 
numbers of countries, school closures had been attributed as having 
little effect on the spread of COVID-19 (refs. 19,20), more recent evi-
dence has been in favour of the importance of this NPI28,29; school 
closures in the United States have been found to reduce COVID-19 
incidence and mortality by about 60% (ref. 28). This result is also in 
line with a contact-tracing study from South Korea, which identi-
fied adolescents aged 10–19 years as more likely to spread the virus 
than adults and children in household settings30. Individual move-
ment restrictions (including curfew, the prohibition of gatherings 
and movements for non-essential activities or measures segmenting 
the population) were also amongst the top-ranked measures.

However, such radical measures have adverse consequences. 
School closure interrupts learning and can lead to poor nutrition, 
stress and social isolation in children31–33. Home confinement has 

strongly increased the rate of domestic violence in many countries, 
with a huge impact on women and children34,35, while it has also 
limited the access to long-term care such as chemotherapy, with 
substantial impacts on patients’ health and survival chance36,37. 
Governments may have to look towards less stringent measures, 
encompassing maximum effective prevention but enabling an 
acceptable balance between benefits and drawbacks38.

Previous statistical studies on the effectiveness of lockdowns 
came to mixed conclusions. Whereas a relative reduction in Rt of 
5% was estimated using a Bayesian hierarchical model19, a Bayesian 
mechanistic model estimated a reduction of 80% (ref. 20), although 
some questions have been raised regarding the latter work because 
of biases that overemphasize the importance of the most recent mea-
sure that had been implemented24. The susceptibility of other mod-
elling approaches to biases resulting from the temporal sequence 
of NPI implementations remains to be explored. Our work tries to 
avoid such biases by combining multiple modelling approaches and 
points to a mild impact of lockdowns due to an overlap with effects 
of other measures adopted earlier and included in what is referred 
to as ‘national (or full) lockdown’. Indeed, the national lockdown 
encompasses multiple NPIs (for example, closure of land, sea and 
air borders, closure of schools, non-essential shops and prohibi-
tion of gatherings and visiting nursing homes) that countries may  
have already adopted in parts. From this perspective, the relatively 
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attenuated impact of the national lockdown is explained as the little 
delta after other concurrent NPIs have been adopted. This conclu-
sion does not rule out the effectiveness of an early national lock-
down, but suggests that a suitable combination (sequence and time 
of implementation) of a smaller package of such measures can sub-
stitute for a full lockdown in terms of effectiveness, while reduc-
ing adverse impacts on society, the economy, the humanitarian 
response system and the environment6,39–41.

Taken together, the social distancing and movement-restriction 
measures discussed above can therefore be seen as the ‘nuclear 
option’ of NPIs: highly effective but causing substantial collateral 
damages to society, the economy, trade and human rights4,39.

We find strong support for the effectiveness of border restric-
tions. The role of travelling in the global spread of respiratory 
diseases proved central during the first SARS epidemic (2002–
2003)42, but travelling restrictions show a large impact on trade, 
economy and the humanitarian response system globally41,43. The 
effectiveness of social distancing and travel restrictions is also in 
line with results from other studies that used different statistical 
approaches, epidemiological metrics, geographic coverage and NPI 
classification2,8–11,13,19,20.

We also find a number of highly effective NPIs that can be consid-
ered less costly. For instance, we find that risk-communication strat-
egies feature prominently amongst consensus NPIs. This includes 
government actions intended to educate and actively communicate 
with the public. The effective messages include encouraging people 
to stay at home, promoting social distancing and workplace safety 
measures, encouraging the self-initiated isolation of people with 
symptoms, travel warnings and information campaigns (mostly 
via social media). All these measures are non-binding government 
advice, contrasting with the mandatory border restriction and 
social distancing measures that are often enforced by police or army 
interventions and sanctions. Surprisingly, communicating on the 
importance of social distancing has been only marginally less effec-
tive than imposing distancing measures by law. The publication of 
guidelines and work safety protocols to managers and healthcare 
professionals was also associated with a reduction in Rt, suggest-
ing that communication efforts also need to be tailored toward 
key stakeholders. Communication strategies aim at empowering 
communities with correct information about COVID-19. Such 
measures can be of crucial importance in targeting specific demo-
graphic strata found to play a dominant role in driving the spread  
of COVID-19 (for example, communication strategies to target 
individuals aged <40 years44).

Government food assistance programmes and other financial 
supports for vulnerable populations have also turned out to be 
highly effective. Such measures are, therefore, not only impacting 
the socio-economic sphere45 but also have a positive effect on public 
health. For instance, facilitating people’s access to tests or allowing 
them to self-isolate without fear of losing their job or part of their 
salary may help in reducing Rt.

Some measures are ineffective in (almost) all methods and data-
sets—for example, environmental measures to disinfect and clean 
surfaces and objects in public and semi-public places. This find-
ing is at odds with current recommendations of the WHO (World 
Health Organization) for environmental cleaning in non-healthcare 
settings46, and calls for a closer examination of the effectiveness of 
such measures. However, environmental measures (for example,  
cleaning of shared surfaces, waste management, approval of a  
new disinfectant, increased ventilation) are seldom reported by  
governments or the media and are therefore not collected by NPI 
trackers, which could lead to an underestimation of their impact. 
These results call for a closer examination of the effectiveness of 
such measures. We also find no evidence for the effectiveness of 
social distancing measures in regard to public transport. While 
infections on buses and trains have been reported47, our results 

may suggest a limited contribution of such cases to the overall virus 
spread, as previously reported48. A heightened public risk awareness 
associated with commuting (for example, people being more likely 
to wear face masks) might contribute to this finding49. However, 
we should note that measures aiming at limiting engorgement  
or increasing distancing on public transport have been highly 
diverse (from complete cancellation of all public transport to 
increase in the frequency of traffic to reduce traveller density) and 
could therefore lead to widely varying effectiveness, also depending 
on the local context.

The effectiveness of individual NPIs is heavily influenced by 
governance (Supplementary Information) and local context, as evi-
denced by the results of the entropic approach. This local context 
includes the stage of the epidemic, socio-economic, cultural and 
political characteristics and other NPIs previously implemented. 
The fact that gross domestic product is overall positively correlated 
with NPI effectiveness whereas the governance indicator ‘voice 
and accountability’ is negatively correlated might be related to the 
successful mitigation of the initial phase of the epidemic of certain 
south-east Asian and Middle East countries showing authoritar-
ian tendencies. Indeed, some south-east Asian government strate-
gies heavily relied on the use of personal data and police sanctions 
whereas the Middle East countries included in our analysis reported 
low numbers of cases in March–April 2020.

By focusing on individual countries, the what-if experiments 
using artificial country-specific sequences of NPIs offer a way to 
quantify the importance of this local context with respect to mea-
surement of effectiveness. Our main takeaway here is that the same 
NPI can have a drastically different impact if taken early or later, or 
in a different country.

It is interesting to comment on the impact that ‘enhancing test-
ing capacity’ and ‘tracing and tracking’ would have had if adopted at 
different points in time. Enhancing testing capacity should display 
a short-term increase in Rt. Counter-intuitively, in countries testing 
close contacts, tracing and tracking, if they are effective, would have 
a similar effect on Rt because more cases will be found (although 
tracing and tracking would reduce Rt in countries that do not test 
contacts but rely on quarantine measures). For countries imple-
menting these measures early, indeed, we find a short-term increase 
in Rt (when the number of cases was sufficiently small to enable 
tracing and testing of all contacts). However, countries implement-
ing these NPIs later did not necessarily find more cases, as shown 
by the corresponding decrease in Rt. We focus on March and April 
2020, a period in which many countries had a sudden surge in  
cases that overwhelmed their tracing and testing capacities, which 
rendered the corresponding NPIs ineffective.

Assessment of the effectiveness of NPIs is statistically challeng-
ing, because measures were typically implemented simultaneously 
and their impact might well depend on the particular implementa-
tion sequence. Some NPIs appear in almost all countries whereas in 
others only a few, meaning that we could miss some rare but effec-
tive measures due to a lack of statistical power. While some meth-
ods might be prone to overestimation of the effects from an NPI 
due to insufficient adjustments for confounding effects from other 
measures, other methods might underestimate the contribution of 
an NPI by assigning its impact to a highly correlated NPI. As a con-
sequence, estimates of ΔRt might vary substantially across different 
methods whereas agreement on the significance of individual NPIs 
is much more pronounced. The strength of our study, therefore, lies 
in the harmonization of these four independent methodological  
approaches combined with the usage of an extensive dataset on 
NPIs. This allows us to estimate the structural uncertainty of NPI 
effectiveness—that is, the uncertainty introduced by choosing a cer-
tain model structure likely to affect other modelling works that rely 
on a single method only. Moreover, whereas previous studies often 
subsumed a wide range of social distancing and travel restriction 
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measures under a single entity, our analysis contributes to a more 
fine-grained understanding of each NPI.

The CCCSL dataset features non-homogeneous data complete-
ness across the different territories, and data collection could be 
biased by the data collector (native versus non-native) as well as by 
the information communicated by governments (see also ref. 23). The 
WHO-PHSM and CoronaNet databases contain a broad geographic 
coverage whereas CCCSL focuses mostly on developed countries. 
Moreover, the coding system presents certain drawbacks, notably 
because some interventions could belong to more than one category 
but are recorded only once. Compliance with NPIs is crucial for 
their effectiveness, yet we assumed a comparable degree of compli-
ance by each population. We tried to mitigate this issue by validat-
ing our findings on two external databases, even if these are subject 
to similar limitations. We did not perform a formal harmonization 
of all categories in the three NPI trackers, which limits our ability 
to perform full comparisons among the three datasets. Additionally, 
we neither took into account the stringency of NPI implementa-
tion nor the fact that not all methods were able to describe potential 
variations in NPI effectiveness over time, besides the dependency 
on the epidemic age of its adoption. The time window is limited 
to March–April 2020, where the structure of NPIs is highly corre-
lated due to simultaneous implementation. Future research should 
consider expanding this window to include the period when many 
countries were easing policies, or maybe even strenghening them 
again after easing, as this would allow clearer differentiation of the 
correlated structure of NPIs because they tended to be released, and 
implemented again, one (or a few) at a time.

To compute Rt, we used time series of the number of confirmed 
COVID-19 cases50. This approach is likely to over-represent patients 
with severe symptoms and may be biased by variations in testing 
and reporting policies among countries. Although we assume a 
constant serial interval (average timespan between primary and 
secondary infection), this number shows considerable variation in 
the literature51 and depends on measures such as social distancing 
and self-isolation.

In conclusion, here we present the outcome of an extensive  
analysis on the impact of 6,068 individual NPIs on the Rt of COVID-
19 in 79 territories worldwide. Our analysis relies on the combina-
tion of three large and fine-grained datasets on NPIs and the use of 
four independent statistical modelling approaches.

The emerging picture reveals that no one-size-fits-all solution 
exists, and no single NPI can decrease Rt below one. Instead, in the 
absence of a vaccine or efficient antiviral medication, a resurgence 
of COVID-19 cases can be stopped only by a suitable combina-
tion of NPIs, each tailored to the specific country and its epidemic 
age. These measures must be enacted in the optimal combina-
tion and sequence to be maximally effective against the spread of 
SARS-CoV-2 and thereby enable more rapid reopening.

We showed that the most effective measures include closing and 
restricting most places where people gather in smaller or larger 
numbers for extended periods of time (businesses, bars, schools and 
so on). However, we also find several highly effective measures that 
are less intrusive. These include land border restrictions, govern-
mental support to vulnerable populations and risk-communication 
strategies. We strongly recommend that governments and other 
stakeholders first consider the adoption of such NPIs, tailored to 
the local context, should infection numbers surge (or surge a sec-
ond time), before choosing the most intrusive options. Less drastic 
measures may also foster better compliance from the population.

Notably, the simultaneous consideration of many distinct NPI 
categories allows us to move beyond the simple evaluation of indi-
vidual classes of NPIs to assess, instead, the collective impact of spe-
cific sequences of interventions. The ensemble of these results calls 
for a strong effort to simulate what-if scenarios at the country level 
for planning the most probable effectiveness of future NPIs, and, 

thanks to the possibility of going down to the level of individual 
countries and country-specific circumstances, our approach is the 
first contribution toward this end.

Methods
Data. NPI data. We use the publicly available CCCSL dataset on NPIs23, in which 
NPIs are categorized using a four-level hierarchical coding scheme. L1 defines 
the theme of the NPI: ‘case identification, contact tracing and related measures’, 
‘environmental measures’, ‘healthcare and public health capacity’, ‘resource 
allocation’, ‘returning to normal life’, ‘risk communication’, ‘social distancing’ and 
‘travel restriction’. Each L1 (theme) is composed of several categories (L2 of the 
coding scheme) that contain subcategories (L3), which are further subdivided 
into group codes (L4). The dataset covers 56 countries; data for the United States 
are available at the state level (24 states), making a total of 79 territories. In this 
analysis, we use a static version of the CCCSL, retrieved on 17 August 2020, 
presenting 6,068 NPIs. A glossary of the codes, with a detailed description of each 
category and its subcategories, is provided on GitHub. For each country, we use 
the data until the day for which the measures have been reliably updated. NPIs that 
have been implemented in fewer than five territories are not considered, leading to 
a final total of 4,780 NPIs of 46 different L2 categories for use in the analyses.

Second, we use the CoronaNet COVID-19 Government Response Event Dataset 
(v.1.0)27 that contains 31,532 interventions and covers 247 territories (countries 
and US states) (data extracted on 17 August 2020). For our analysis, we map their 
columns ‘type’ and ‘type_sub_cat’ onto L1 and L2, respectively. Definitions for the 
entire 116 L2 categories can be found on the GitHub page of the project.

Using the same criterion as for the CCCSL, we obtain a final total of 
18,919 NPIs of 107 different categories.

Third, we use the WHO-PHSM dataset26, which merges and harmonizes the 
following datasets: ACAPS41, Oxford COVID-19 Government Response Tracker52, 
the Global Public Health Intelligence Network (GPHIN) of Public Health Agency 
of Canada (Ottawa, Canada), the CCCSL23, the United States Centers for Disease 
Control and Prevention and HIT-COVID53. The WHO-PHSM dataset contains 
24,077 interventions and covers 264 territories (countries and US states; data 
extracted on 17 August 2020). Their encoding scheme has a heterogeneous coding 
depth and, for our analysis, we map ‘who_category’ onto L1 and either take ‘who_
subcategory’ or a combination of ‘who_subcategory’ and ‘who_measure’ as L2. 
This results in 40 measure categories. A glossary is available at: https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/phsm.

The CoronaNet and WHO-PHSM datasets also provide information on the 
stringency of the implementation of a given NPI, which we did not use in the 
current study.

COVID-19 case data. To estimate Rt and growth rates of the number of COVID-
19 cases, we use time series of the number of confirmed COVID-19 cases in the 
79 territories considered50. To control for weekly fluctuations, we smooth the time 
series by computing the rolling average using a Gaussian window with a standard 
deviation of 2 days, truncated at a maximum window size of 15 days.

Regression techniques. We apply four different statistical approaches to quantify 
the impact of a NPI, M, on the reduction in Rt (Supplementary Information).

CC. Case-control analysis considers each single category (L2) or subcategory (L3) 
M separately and evaluates in a matched comparison the difference, ΔRt, in Rt 
between all countries that implemented M (cases) and those that did not (controls) 
during the observation window. The matching is done on epidemic age and the 
time of implementation of any response. The comparison is made via a linear 
regression model adjusting for (1) epidemic age (days after the country has reached 
30 confirmed cases), (2) the value of Rt before M takes effect, (3) total population, 
(4) population density, (5) the total number of NPIs implemented and (6) the 
number of NPIs implemented in the same category as M. With this design, we 
investigate the time delay of τ days between implemention of M and observation of 
ΔRt, as well as additional country-based covariates that quantify other dimensions 
of governance and human and economic development. Estimates for Rt are 
averaged over delays between 1 and 28 days.

Step function Lasso regression. In this approach we assume that, without any 
intervention, the reproduction factor is constant and deviations from this constant 
result from a delayed onset by τ days of each NPI on L2 (categories) of the 
hierarchical dataset. We use a Lasso regularization approach combined with a meta 
parameter search to select a reduced set of NPIs that best describe the observed 
ΔRt. Estimates for the changes in ΔRt attributable to NPI M are obtained from 
country-wise cross-validation.

RF regression. We perform a RF regression, where the NPIs implemented in a 
country are used as predictors for Rt, time-shifted τ days into the future. Here,  
τ accounts for the time delay between implementation and onset of the effect of 
a given NPI. Similar to the Lasso regression, the assumption underlying the RF 
approach is that, without changes in interventions, the value of Rt in a territory 
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remains constant. However, contrary to the two methods described above, RF 
represents a nonlinear model, meaning that the effects of individual NPIs on Rt do 
not need to add up linearly. The importance of a NPI is defined as the decline in 
predictive performance of the RF on unseen data if the data concerning that NPI 
are replaced by noise, also called permutation importance.

Transformer modelling. Transformers54 have been demonstrated as models suitable 
for dynamic discrete element processes such as textual sequences, due to their ability 
to recall past events. Here we extended the transformer architecture to approach 
the continuous case of epidemic data by removing the probabilistic output layer 
with a linear combination of transformer output, whose input is identical to that 
for RF regression, along with the values of Rt. The best-performing network (least 
mean-squared error in country-wise cross-validation) is identified as a transformer 
encoder with four hidden layers of 128 neurons, an embedding size of 128, eight 
heads, one output described by a linear output layer and 47 inputs (corresponding 
to each category and Rt). To quantify the impact of measure M on Rt, we use the 
trained transformer as a predictive model and compare simulations without any 
measure (reference) to those where one measure is presented at a time to assess 
ΔRt. To reduce the effects of overfitting and multiplicity of local minima, we report 
results from an ensemble of transformers trained to similar precision levels.

Estimation of Rt. We use the R package EpiEstim55 with a sliding time window of 
7 days to estimate the time series of Rt for every country. We choose an uncertain 
serial interval following a probability distribution with a mean of 4.46 days and a 
standard deviation of 2.63 days56.

Ranking of NPIs. For each of the methods (CC, Lasso regression and TF), we 
rank the NPI categories in descending order according to their impact—that is, 
the estimated degree to which they lower Rt or their feature importance (RF). To 
compare rankings, we count how many of the 46 NPIs considered are classified as 
belonging to the top x ranked measures in all methods, and test the null hypothesis 
that this overlap has been obtained from completely independent rankings. The 
P value is then given by the complementary cumulative distribution function for a 
binomial experiment with 46 trials and success probability (x/46)4. We report the 
median P value obtained over all x ≤ 10 to ensure that the results are not dependent 
on where we impose the cut-off for the classes.

Co-implementation network. If there is a statistical tendency that a country 
implementing NPI i also implements NPI j later in time, we draw a direct link from 
i to j. Nodes are placed on the y axis according to the average epidemic age at which 
the corresponding NPI is implemented; they are grouped on the x axis by their L1 
theme. Node colours correspond to themes. The effectiveness scores for all NPIs 
are re-scaled between zero and one for each method; node size is proportional to 
the re-scaled scores, averaged over all methods.

Entropic country-level approach. Each territory can be characterized by its 
socio-economic conditions and the unique temporal sequence of NPIs adopted. To 
quantify the NPI effect, we measure the heterogeneity of the overall rank of a NPI 
amongst the countries that have taken that NPI. To compare countries that have 
implemented different numbers of NPIs, we consider the normalized rankings 
where the ranking position is divided by the number of elements in the ranking 
list (that is, the number of NPIs taken in a specific country). We then bin the 
interval [0, 1] of the normalized rankings into ten sub-intervals and compute for 
each NPI the entropy of the distribution of occurrences of that NPI in the different 
normalized rankings per country:

SðNPI Þ ¼ � 1
log ð10Þ

X

i

Pilog ðPiÞ; ð1Þ

where Pi is the probability that the NPI considered appeared in the ith bin in the 
normalized rankings of all countries. To assess the confidence of these entropic 
values, results are compared with expectations from a temporal reshuffling of 
the data. For each country, we keep the same NPIs adopted but reshuffle the time 
stamps of their adoption.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The CCCSL dataset can be downloaded from http://covid19-interventions.
com/. The CoronaNet data can be found at https://www.coronanet-project.
org/. The WHO-PHSM dataset is available at https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/phsm. Snapshots of the datasets used in 
our study are available in the following github repository: https://github.com/
complexity-science-hub/ranking_npis.

Code availability
Custom code for the analysis is available in the following github repository: https://
github.com/complexity-science-hub/ranking_npis.
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Extended Data Fig. 1 | Main results for the CCCSL dataset. Normalised scores (relative effect within a method) of the NPI categories in CCCSL, averaged 
over the four different approaches.
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Extended Data Fig. 2 | Main results for the CoronaNet dataset. Normalised scores (relative effect within a method) of the NPI categories in CoronaNet, 
averaged over the four different approaches. Full names of the abbreviated L2 categories can be looked up in SI; Supplementary Table 3.
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Extended Data Fig. 3 | Main results for the WHO-PHSM dataset. Normalised scores (relative effect within a method) of the NPI categories in 
WHO-PHSM, averaged over the four different approaches. Full names of the abbreviated L2 categories can be looked up in SI; Supplementary Table 4.
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Extended Data Fig. 4 | Measure effectiveness in the WHO-PHSM dataset. Analogue to Fig. 1 of the main text if the analysis is done on the WHO-PHSM 
dataset. Full names of the abbreviated L2 categories can be looked up in SI; Supplementary Table 4.
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Extended Data Fig. 5 | Measure effectiveness in the CoronaNet dataset(part 1). Analogue to Fig. 1 of the main text if the analysis is done on the 
CoronaNat dataset (continued in Extended Data Fig. 6). Full names of the abbreviated L2 categories can be looked up in SI; Supplementary Table 3.
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Extended Data Fig. 6 | Measure effectiveness in the WHO-PHSM dataset (part 2). Analogue to Fig. 1 of the main text if the analysis is done on the 
CoronaNat dataset (continued from Extended Data Fig. 5). Full names of the abbreviated L2 categories can be looked up in SI; Supplementary Table 3.
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